Alexandre Araujo

alexandre.araujonyu.edu

Last update August 2023

I am currently a postdoctoral researcher at New York University in the EnSuRe Research Group. I work with Siddharth Garg and Farshad Khorrami on Trustworthy Machine Learning. Prior to that, I was a postdoctoral researcher at INRIA and École Normale Supérieure (ENS) in the WILLOW project-team in Paris, France. I obtained my PhD in Computer Science in June 2021 at Université Paris Dauphine-PSL where I was advised by Pr. Jamal Atif, Pr. Yann Chevaleyre and Dr. Benjamin Negrevergne.
Research
Semidefinite Programs for Computing Lipschitz Bounds of Neural Networks with MaxMin Activations
P. Pauli, A. Havens, A. Araujo, S. Garg, F. Khorrami, F. Allgower and B. Hu
Preprint • 2023
paperbibtex
Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability
H. Xue, A. Araujo, B. Hu and Y. Chen
Preprint • 2023
papercodebibtex
R-LPIPS: An Adversarially Robust Perceptual Similarity Metric
S. Ghazanfari, S. Garg, P. Krishnamurthy, F. Khorrami and A. Araujo
ICML Workshop on New Frontiers in Adversarial Machine Learning • 2023
papercodebibtex
Certification of Deep Learning Models for Medical Image Segmentation
O. Laousy, A. Araujo, G. Chassagnon, N. Paragios, M. Revel and M. Vakalopoulou
MICCAI • 2023
paperbibtex
Towards Better Certified Segmentation via Diffusion Models
O. Laousy, A. Araujo, G. Chassagnon, M. Revel, S. Garg, F. Khorrami and M. Vakalopoulou
UAI • 2023
papercodebibtex
Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram Iteration
B. Delattre, Q. Barthelemy, A. Araujo and A. Allauzen
ICML • 2023
papercodebibtex
A Unified Algebraic Perspective on Lipschitz Neural Networks
A. Araujo*, A. Havens*, B. Delattre, A. Allauzen and B. Hu
ICLR • 2023 — Spotlight
paperbibtex
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
R. Ettedgui*, A. Araujo*, R. Pinot, Y. Chevaleyre and J. Atif
Preprint • 2022
paperbibtex
A Dynamical System Perspective for Lipschitz Neural Networks
L. Meunier*, B. Delattre*, A. Araujo* and A. Allauzen
ICML • 2022 — ORAL
paperbibtex
Building Compact and Robust Deep Neural Networks with Toeplitz Matrices
A. Araujo
PhD Thesis • 2021
paperbibtex
On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory
A. Araujo, B. Negrevergne, Y. Chevaleyre and J. Atif
AAAI • 2020
papercodebibtex
Advocating for Multiple Defense Strategies against Adversarial Examples
A. Araujo, L. Menuier, R. Pinot and B. Negrevergne
ECML - Workshops • 2020
paperbibtex
Theoretical Evidence for Adversarial Robustness through Randomization
R. Pinot, L. Meunier, A. Araujo, H. Kashima, F. Yger, C. Gouy-Pailler and J. Atif
NeurIPS • 2019
papercodebibtex
Understanding and Training Deep Diagonal Circulant Neural Networks
A. Araujo, B. Negrevergne, Y. Chevaleyre and J. Atif
ECAI • 2019
paperbibtex
Training Compact Deep Learning Models for Video Classification using Circulant Matrices
A. Araujo, B. Negrevergne, Y. Chevaleyre and J. Atif
ECCV - Workshops • 2018
papercodebibtex